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• Why regional parks?

• Location-based services and StreetLight data

• Case study: Long Lake Regional Park

Outline
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• The Metropolitan Council is required by law 

to estimate how many people visit the 

regional parks system annually

• Regional parks are owned and managed by 

implementing agencies

Why regional parks?

68
Regional parks, 

park reserves, & 

special features

Regional trails78
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• Annual Use Estimates

– Representative at the agency level

• Visitor Studies

– In-person sampled surveys

– Representative at the agency level

• Limitations

– Every park has its unique features 

and geography

– Self-selection survey bias

– Funding restrictions

How we usually research visitors

Image, chart: Metropolitan Council

https://metrocouncil.org/Parks/Files/PlayFeatures/PlayFeatures-2017-Regional-Park-System-Use-Estima.aspx
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• Why regional parks?

• Location-based services and StreetLight data

• Case study: Long Lake Regional Park

Outline
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• Go to your settings

– Or try swiping down from the top of your 

screen, and look for an icon like these

• If your location is turned on, then your data 

is being collected by someone

• Apps and services use your location to 

provide services

Take out your phone!
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StreetLight Data 

• Provides platform for running individual 

analyses, such as zone activity and 

origin-destination

• Uses LBS data gathered from apps, 

such as shopping, dating, weather, 

productivity

• Accurate to 20 meters (65 feet)

“StreetLight Data is the first company to 

make using real-world transportation data 

easy, efficient, and affordable.” 

Image, quote: “About Us” page

https://www.streetlightdata.com/who-we-are-streetlight-data/
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Personal identifiable 

information is 

removed by the LBS 

data provider

Data Privacy

StreetLight does not 

process, use, or 

distribute personally 

identifiable information

Users contractually commit 

to not using StreetLight 

metrics in combination with 

other materials to try to 

identify individuals.

https://www.streetlightdata.com/streetlight-data-privacy-principles/
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• StreetLight Traffic Index a normalized measure of relative traffic in each area

– The Index is NOT a count of devices or vehicles

• Calculated using LBS data, with contextual verification

• Large sample size

• Bike and pedestrian (limited)

StreetLight data characteristics
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• Why regional parks?

• Location-based services and StreetLight data

• Case study: Long Lake Regional Park

Outline
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Long Lake Regional Park

• Regional park in Ramsey county

• Amenities include

– Guarded swimming beach

– Playgrounds

– Boat launch

– Pavilion

– Trails
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Long Lake Regional Park

• We want to know where there is the 

most activity within the park

• Now broken into 996 hexagons, 

each 1.2 square kilometers

• Careful to avoid private residences!
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Run the StreetLight Analysis

• Zone Activity Analysis with…

– All months in 2018

– Only trips that end in the park 

– On any day of the week (M-Su)

– During recreation hours (8am-8pm)

• Results

– Sample size of approx. 2,000 devices and 4,000 trips

– StreetLight Index range from 0-9
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Traffic Index Distribution, Long Lake
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Testing for spatial autocorrelation
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Identifying neighbors

• In this case, neighbors are hexagons that share a line 

segment (rook’s scheme)

Image, Amazon

https://www.amazon.com/dp/B00480OHWK/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
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Spatial weights matrix
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Create lagged variable
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neighbors <-

poly2nb(pl = long_lake_spatial,                      
queen = FALSE) 

neighbors_weights_list <-
nb2listw(neighbors,                                    

style = "S", 

zero.policy = TRUE) 

# allows NA values

“S” specifies a variance stabilizing 

coding scheme (Tiefelsdorf et al. 

1999).

Create neighbors and weights
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Measure clustering with Moran’s  I

Gimond, Manuel. 2019. Intro to GIS 

and Spatial Analysis. Colby College

“Moran’s I is the correlation 

coefficient for the relationship 

between a variable and its 

surrounding values.” 

Gimond, 2019

https://mgimond.github.io/Spatial/spatial-autocorrelation.html
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Moran’s I value

Moran’s I = -1, 

Perfect dispersion

Moran’s I = 0, 

Random

Moran’s I = 1, 

Clustered
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Global Moran’s I

Moran I test under randomisation

data:  long_lake_spatial$zone_traffic_st_l_index  

weights: neighbors_weights_list  n reduced by no-neighbour 
observations

Moran I statistic standard deviate = 12.78, p-value < 
0.00000000000000022

alternative hypothesis: greater

sample estimates:

Moran I statistic       Expectation          Variance 

0.555167330 -0.003389831       0.001910092 
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Monte Carlo simulation

Assigns a random value to every 

hexagon and runs a Moran’s I test. 

Repeat 600 times

statistic = 0.55517, observed 
rank = 600, p-value = 0.001667

alternative hypothesis: greater
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Find “hotspots” with LISA

• LISA (Local Indicators of Spatial Association)1

– Used to find clusters within the entire dataset

– Breaks down the Global Moran’s I by calculating 

Moran’s I for each hexagon

– Finds significant areas with a pseudo p-value

Quickmeme

LM_Results <- localmoran(
long_lake_spatial$zone_traffic_st_l_index, 
neighbors_weights_list,
p.adjust.method = "fdr”,
na.action = na.exclude,
zero.policy = TRUE)

1: Anselin et al. 2006 GeoDa

http://www.quickmeme.com/img/bf/bfa34b62e3c7f60032b0365fc0526edcdb3ec55ed9c29e1077f24210c9a0aa31.jpg
https://geodacenter.github.io/workbook/6a_local_auto/lab6a.html
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LISA categories

• The Moran’s I for each hexagon isn’t 

that useful

• A common practice is to assign 

categories based on z-scores of the 

original value and the lagged value 

• These identify spatial clusters and 

spatial outliers

Clustering of Census 

Recorded Ethnic Background

Simon Hailstone, 2017

https://rpubs.com/Hailstone/346625
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LISA categories, explained

[Observed z-score] [Lagged z-score]-
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LISA categories, explained

If > 0, “High”

If < 0, “Low”

[Observed z-score] [Lagged z-score]-
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LISA categories, explained

If > 0, “High”

If < 0, “Low”

[Observed z-score] [Lagged z-score]-



31

LISA categories, explained

High High-

Hexagon is relatively high and surrounded by high values. 

This is a high traffic spatial cluster!
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LISA categories, explained

High Low-

Hexagon is relatively high and surrounded by low values. 

This is a spatial outlier!
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LISA categories, explained

Low Low-

Hexagon is relatively low and surrounded by low values. 

This is a low traffic spatial cluster!
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Observed and lagged Index z-scores
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Equivalent
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Pavilion and 

parking

Beach

Boat 

Launch

History 

Center 

parking
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Now repeat!
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Index and Lagged Index z-score

Index z-score
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